UNIVERSITE DE M ONS-HAINAUT
FACULTE DES SCIENCES
INSTITUT D’INFORMATIQUE

Research report

n

Computer Science, speciality : Databases

by Raphaél ASTIER

Subject:

On Data Exchange Problems

Supervised by:
Pr. Jozet WIJSEN

Introduction

We refer here a problem which his exposed in all generality in [3]. This is the problem of data
exchange between a source database and a target database, according to some dependencies.

The Fagin et al framework ([3]) is the following :
Source database schema S — Target database schema T

with sets of dependencies Y, 3; on S, T respectively, and a set of dependencies Y being a
material representation of the way the data is transferred.

Then this gives the definition of a data exchange setting : (S, T, X, 3, Xg), and of the data
exchange problem :

Given a (ground) source database I over the schema S (that is an instance over S),
satisfying X, finding a target database J satisfying ¥, and such that < I,J >
satisfies Y.

Such a J will be called a solution for I relative to this data exchange setting.

We don’t consider here the problem of “data integration” where several source databases may
intervene in the data transfer.

Example.

We consider a ground instance I of a source database schema S constituted by 3 tables which
represent only the first three academic years in UMH’s computer science institute, and a
target database T which merges the contents of these 3 tables in one table, according to the
filtering described by X .

Yearl Name Address

Alain 2, rue des érables
Sylvie 25, bvd des italiens
Christian 3, impasse sans nom

Year2 Name Address Project
Jérome 21, quai Anatole yes
Alexandre 12, rue du marchepied no
Sylvie 3, rue des lilas yes

Year3 Name Address Project
Judith 7, impasse I’Abbé yes

Christophe 1, rue des amandiers no

Year2(z,y, z) — T(x,"2", 2)

Yearl(z,y) — 3 z, T(z,"1",2)
Est = {
Year3(z,y, z) — T(z,"3", 2)

In this paper, we consider special case where ¥y, = @ (only one dependency) and which
has no existential quantifier (that is “rule-based conjunctive query” or “full tuple generating
dependency”, see section 3 and definition 4.1 further).

In that case, the condition “< I,J > satisfies X" is replaced by J = Q(I) (see definition
3.1). For this J, being a solution means J satisfies 3;.

In [3], we found theory on the existence and computation of solutions (“universal solutions”).
But the dependencies 5 on the source are not taken in account: it doesn’t matter what they
are.

Here we take in account ¥, to give an algorithm to decide if for all I over S satisfying >, we
have that J = Q(I) satisfies ¥;. (%)

Returning to our example, assume that Name is a primary key in each relation name Yearl,
Year2, Year3, that is, assume we have functional dependencies:

Name— Address, in Yearl relation, and

Name— Address, Project, in Year2 and Year3 relations.

In terms of first order logical sentences, (used in section 4), that means:
s = {Yearl(z,y), Yearl(z,y') —y =1,
Year2(z,y, z), Year2(z,y',2') =y =1,
Year2(z,y, z), Year2(z,y',z') — z = 2/,
Year3(z,y, z), Year3(z,y',2') =y =1,
Year3(z,vy, z), Year3(z,y',2") — z = 2'}.
In this paper, we consider only full dependencies, so replace for the moment the first depen-
dency of ¥4 by: Yearl(z,y) — T(x,"1", "no").
Then, our algorithm will answer for (x) in this example:
- "NO", if 3, = {Name — Project},
- "YES", if ¥; = {Name, YearLevel — Project}.

Show briefly the starting point of the problem, that we solve in this paper.

Notice first that the chosen instance I of the source database verifies ;. Notice also that
Q(I) contains the name “Sylvie” in years one and two, respectively with “project” fixed at
“no” and “yes”. Then Q(I) does not satisfy >, = {Name — Project}.

Now obviously when ¥; = {Name, YearLevel — Project} we have Q(I) satisfies ;.

All the difficulty is to prove this is true for every I satisfying ;.

1 Preliminaries

We assume enumerable sets of variables and constants, respectively denoted Var and Dom,
and such that Var N Dom = ().

A symbol is either a variable or a constant and we define Sym = Var U Dom.

A free-tuple is a vector (ej,es, ..., e,), where ey, e, ..., e, are symbols, and the arity of
such free-tuple u is denoted #u = n. For such a free-tuple u, we write u[i| = e; for its i-th
coordinate (i € {1,...,n}). We write also Var(u), Dom(u) and Sym(u) = {ey, ..., e,} for its
respective sets of variables, constants, and symbols.

A S-atom is of the form S(ey, ey, ..., €,) where ey, es, ..., e, are symbols and where S is a
relation name (or if one prefer: “predicate”). More generally, such elements are called atoms.

A database D is a finite set of atoms. The schema of a database D is the set of relation
names that appear in D, and is denoted Schem(D). We also write Var(D), Dom(D) and
Sym(D) the respective sets of variables, constants, and symbols occuring in D.

An atom or a database without variables is called ground. A ground atom is also called
a fact, and a ground free-tuple is called a tuple.

A substitution is a function from Sym to Sym which is identity on Dom. A waluation is
a substitution from Sym to Dom. For a substitution § which is not a valuation, in general
we specify a set V' of variables such that 6 is the identity on Sym\V.

Let V a set of variables. A renaming for the variables in V' is a substitution p on V', such
that p(V') C Var and which is injective on V.

O({e1,ea,...,e,)) = (0(e1),0(e2),...,0(en)),
For 0 a substitution, we define : { 0(S(e1,ea,...,6e,)) = S(0(e1),0(e2),...,0(e,)), (1.0)

(D) = {6(L) | L € D}.

Lemma 1.1 Let A, B be databases, and i a substitution.

~N

. {Var(A), Dom(A)} is a partition of Sym(A).

2. A C B = Var(A) C Var(B), idem for Dom(.), Sym(.), and u(.).

3. Var(A U B) = Var(A) U Var(B), idem for Dom(.) and Sym(.), and u(.).

4. Var(u(A)) C u(Var(A)), Dom(u(A)) 2 p(Dom(A)) = Dom(A) (the two inclusions
becomes equalities when p is a renaming), and Sym(u(A)) = u(Sym(A)),

. Var(A) C Var(B) = p(Var(A)) C p(Var(B)), idem for Dom(.) and Sym(.).

6. Var(A) C Var(B) = Var(u(A)) C Var(u(B), idem for Sym(.), not for Dom(.).

[

Proof. Everything is obvious from (1.0). Just an example for the “not” of 6:

Consider A = {A(e,x)}, B ={B(e,y, 2)}, and let plz/a,y/b, z/c] (a shorthand for u(z) =
w(y) = b, u(z) = ¢). Then Dom(u(A)) = {a,e} € Dom(u(B)) = {b, ¢, e}, and on the other
hand Dom(A) = {e} C Dom(B) = {e}.

Lemma 1.2 Let I be a database and py, ps two substitutions.
Assume ¥ © € Var(I), py(z) = pa(x). Then pi(I) = po(I).

Proof. Obvious from (1.0).

Lemma 1.3 Let (-) denote vector concatenation. Let iy, o be two substitutions, and con-
sider two concatenated free-tuples U = (uy,us, ..., Up) and V = (v1,Vs,...,Uy) (where for
ie{l,...,m}, u; and v; are free-tuples of same arity). Then we have:

(V) = pa(v) <=V 1 <i<m, (i) = pa(vi).
Proof. Obvious from (1.0).

Definition 1.4 A homomorphism from database C to database D is a substitution 6 for the
variables in C such that 6(C) C D. If such a homomorphism from C to D exists, then C
is said to be homomorphic to D, and we write C < D. The relation < is a partial preorder
(misses antisymmetry). As usual we denote = for its inverse relation and ~ its associated
equivalence relation, which is defined by:

C~D<«=C<xDandC>=D.

Lemma 1.5 Let C, D be databases.

1. If C is ground, then C x D < C C D.

2. Let pu a substitution. Then Schem (u(D)) = Schem (D).
3. If C X D, then Schem (C) C Schem (D).

4. Let p a renaming on the variables of D. Then D ~ p(D).

Proof.

1. Obvious, we take # as the identity.

2. Obvious from (1.0).

3. Obvious from 2.

4. We have D < p(D) (using substitution p), and we have u(p(D)) C D (using substitution
, which is p=! on p(D)). Then also p(D) < D. Note that if D is ground, then p is the
identity:.

Note. In general between two equivalent databases C ~ D, it doesn’t exist a renaming
between their respective sets of variables. For example:

C={T(a), T(z)} and D = {T'(a)}, are equivalent but without renaming between {z} and 0.
The same for C = {T'(z), T(y)} and D = {T'(z)}.

2 Unifiers and mgu’s!

On the set of substitutions, we have a partial preorder defined by:
v — | <= d substitution # and u =6 ow.
If v — p, we say that v is more general than p.
We write «<— the inverse relation of <, and ~ the associated equivalence relation.

Now let v and v two free-tuples of same arity n.
An unifier for v and v is a substitution 6 on Var(u) U Var(v) such that 6(u) = 0(v).
A mgu (“most general unifier”) for v and v is a unifier which is more general than each unifier
for u and v.

'We adapt and enlarge here definitions and results from [1], p. 293-294.

2

Lemma 2.6 Let u and v be two free-tuples of same arity.

1. A unifier, hence a mgu, for u and v may not exists. But if a unifier exists, then a
mgu exists. Moreover, in that case, such mgu 6 can be computed in such way that:
0 (Sym(u) U Sym(v)) C Sym(u) U Sym(v).

2. Unifiers and mgus for u and v are not unique. For instance, if 0 is a unifier, for each
substitution v, then v o6 is a unifier. If moreover 8 is mgu, then for each renaming p
on the variables of (Var(u) U Var(v)), then po 6 is also a mgu.

3. If 0 and 0" are mgu for u and v, then 0 =~ ¢'.

4. If 0 is a mgu for u and v and ' some substitution with 6 ~ @', then 0 is also a mgu.

5. Let 0 = 0" be two substitutions, and D a database. Then there exists a renaming p for

the variables in 0(D) such that p(A(D)) = ¢'(D).

Proof.

1. For example the two tuples (a) and (b) do not have a unifier (and so no mgu). The
computation of a mgu 0 for two free-tuples v and v which admit a unifier is exactly similar
to that one given in [1], p. 294. Note: Even, the construction of [1] guarantees the absence of
new variables. The only thing we make use here (in the annexed low-level proof of proposition
3.6) is that we can choose the value of 6(z) for each = € Var(u) U Var(v) as a symbol from u
or v.

2. If 6 is a unifier for u and v, obviously v 08 for v a substitution is also a unifier for u and v.
Assume now that 6 is a mgu, and p a renaming on H(Var(u) U Var(v)). We have:
* 0(u) = 0(v) = (pod)(u) = (pob)(v),

* if v is a unifier for u and v, a substitution p such that v = po . Let p~! the inverse
renaming of p, which acts on the variables in p(@(\/ar(u) U Var(v))), and consider the

substitution ' = po p~'. Then: v = p’ o (po).
Hence we have proved that p o 6 is a mgu for u and v.

3. Because # is a mgu, and 0’ is a unifier, we have 6§ — #’. Symmetrically we have 6’ — 6.
Hence by definition of equivalence ~ we have 0 ~ ¢'.

4. Since 0 =~ ', we have § = o6 for some substitution x. Then 6’ is also unifier for u and v,
and we have to verify that 6’ is “most general”. Let v a unifier for v and v. We have ¢’ — 0
(because 6 =~ "), and € — v (because 6 is most general). So by transitivity §’ < v and then
we conclude €' is an mgu.

5. With the assumption 6 ~ #’, we have v and v/ substitutions such that ¢ = v o 6 and
9 =100 Fory=0(z) € 0(Sym(D)), we define p by p(y) = v(y) (=6'(z)).

We have then a function p from 6(Sym(D)) to ¢ (Sym(D)).

We claim that this function is injective. Let y = 6(z),y’ = 6(2) € 6(Sym(D)), such that
p(y) = p(y'). We have ¢'(z) = 0'(2") = /(' (z)) = V' (0'(2')), that is y = 0(x) = 0(z') = ¢/'.
Now, we notice by definition that this function is identity on the constants of #(Sym(D)),
and then we can extend this function to a substitution p onto the enumerable set Sym.

It remains to verify that p(0(D)) = 6'(D). In fact if S(ey,...,e,) is an atom of D, using
(1.0) and the definition of p we have: p(6(S(es,...,e,))) = ¢'(S(ey,...,e,)), which proves
our assertion.

3 Conjunctive queries

We write conjunctive queries in the form of rules (left-to-right as source-to-target?):

Q : S1(uy), Sa(uz), ..., Sp(u,) — T(v)

where T'(v), S;(u;)’s are atoms and where each variable that occurs in v must occur at least
once in some of the u;’s. Notice that some S;’s may be equal, but with different u,’s.

The term rule will be used as a shorthand for “rule-based conjunctive query.” The semantics
of rules on ground databases can be found in [1], page 41. It is straightforward to extend
these semantics to non-ground databases (see below the output of a rule).

The output schema of the above rule is {T'}, and the source schema is {Sy,...,S,}.

We denote S = {S1(uy), So(ua), ..., Sp(u,)}, and T = {T'(v)} the source and target databases,
and H = T'(v) the target T-atom of the rule (this is also the “head” of the rule).

Then the above rule can be simply written as: @ :S — H, oreven @ :S — T.

Using these notations, previous assertion is then: Var(H) = Var(T'(v)) = Var(T) C Var(S).

Definition 3.1 Let Q: S — T(v) be a rule, and I a database.

We define Q(I) = {u(T(v)) | 1 is a substitution on Var(S) and pu(S) C I}
={w(T(v)) | p is a homomorphism from S to I}.

Lemma 3.2 Let Q:S — T(v) be a rule.

1. If T is a ground database, then Q(I) is ground, and we may replace “substitution” by
“valuation” in definition of Q(I).

2. Monotonicity: if I, J are databases, I < J = Q(I) < Q(J). Of course when I, J are
ground, we have the same with inclusions.

3. For 1 a database and v a substitution, we have v(Q(I)) C Q(v(I)).

Proof.
1. Notice that obviously: I is ground < Var(I) =0 < Sym(I) = Dom(I).
We have by 1.1.2: u(S) € I = Var(u(S)) € Var(I), and recalling Var(T) C Var(S),
then by 1.1.6, we get Var(u(T)) C Var(u(S)). But since Var(T'(v)) = Var(T), obviously:
Var (u(T'(v))) = Var(u(T)), hence:
Var(Q(I)) = U Var (u(T'(v))) = U Var (u(T)) = 0.
1 substitution 1 substitution
and pu(S) C I and pu(S) C I
Therefore Q(I) is ground.
Now the fact that we may replace “substitution” by “valuation” in definition of Q(I) is
obvious, since variables outside Var(S) are irrelevant.

2. Note: this result is monotonicity of conjunctive queries, which is proved in [1], 4.2.2 p. 42
for ground databases. For complete reference, we verify this here with general databases.

2Cf. Introduction about the “framework” of Fagin.

If I < J, we have a substitution v such that v(I) C J. We search for a substitution v’ such
that v/(Q(I)) C Q(J). Take v/ = v. We have:
v(Q()) = {v((T'(v))) | p substitution on Var(S) and u(S) C I},

{Q(J) = {u/(T'(v)) | p' substitution on Var(S) and x/(S) C J}.
Let T'(w) = v((T'(v))) an element of v(Q(I)). Define the substitution x' such that ' equals
vou on Var(S), and is identity elsewhere. As Var (T'(v)) C Var(S), we have T'(w) = p/(T(v)).
But we have also p/ on Var(S) by definition, and V = € Var(S), p/(z) = (v o p)(x), then,
using lemmas 1.3 and 1.1 we get: p/(S) = v(u(S)) Cv(I) C J.
All these conditions show that T'(w) € Q(J), and then we have proved v(Q(I)) C Q(J) as
desired.

3. We have I 5 v(I), so if we set J = v(I), we have substitution v such that v(I) C J. Then
previous proof 2 gives us: v(Q(I)) C Q(J) = Q(v(I)).

Lemma 3.3 Let (Q: S — T be a rule, and I a database.

1. If Q(X) # O then the schema of 1 contains that one of S.
2. If S={S(u)} (only one relation name), then Q(S) =T (={T(v)}).
3. Let p a renaming on Var(S). Recall that Var(T) C Var(S).
Consider the rule Q,: p(S) — p(T). Then for all database I, we have Q,(I) = Q(I).

Proof.
1. It Q(I) # 0, it exists u a substitution on S with p(S) C I. Then S < I and the result
follows from lemma 1.5.5.

2. Straightforward using (1.0). (In this case of only one relation name in S, the only
possibility for p substitution on Var (S) to satisfy p(S) C S is that p equals identity).

3. Show first Q(I) C Q,(I). Let y € Q(I), y = pu(T'(v)), with p substitution on Var(S) such
that pu(S) C I. Define a substitution g’ like this: ¥V z € Sym, p/(p(x)) = u(x). For this
definition being valid, we have to verify that V x,2’, p(z) = p(2’) = p(z) = p(a’), and this is
clear since p is injective. Then p’' o p = p and with (1.0) we have y = /(T (p(v))), with p/
(on Var(p(S))) such that 1/'(p(S)) = p(S) C I, hence y € Q,(I).

Show now Q(I) 2 Q,(I). Let y € Q,(I), then y = p/(T'(p(v))), with z’ substitution (on
Var(p(S))) such that 1/(p(S)) € L. It suffices to consider the substitution = ' o p.

Definition 3.4 Let Q:S — H =T (v) be a rule and D a database with schema {T'}.
Let V be the set of variables that occur in Q. (Recall Var(H) C Var(S), hence V = Var(S)).

For every L € D, let pp, be a renaming for the variables in V', such that:

«V L eD, p,(V)NVar(D) = 0,

*V Ly,Lo €D, Ly # Ly = pr, (V)N pr, (V) = 0.
Consider the set U = {p substitution | u(L) = p(pr(H)) ¥ L € D}. Assume there ezists
0 € U such that 0 is more general than every elements of U (a “most general element”).

Let then C = U{p.(S) | L € D}. Then the database 6(C) is called a Q-source for D.3
3 See also ANNEX, remark-examples 6.2.

Remark 3.5 Write D = {T'(vy),T(vs),...,T(vy)} for some m > 1, and write then p; the
previous renamings (¢ = 1,...,m). Write v= (vq,...,v,) and W= (p1(v),...,pm(v)) the
concatenate free-tuples.

1. Using (1.0) and 1.3 we have U = {p | o unifier for v and w}. Then, using 2.6.1:

U # ()< 3 amgu for vand W ; and in that case the most general elements of U are
exactly the mgu’s for v and w. Also notice that Q-source does not exist when U = ().

2. We will often use the symbolism Q (D) for a Q-source of D (an easy shortand). We can
justify this because a ()-source is unique up to renaming of the variables, since lemma 2.6
(points 3 and).

3. We have by 1.1.3: QYD) =0(| J p(S)) = | J 0(p.(9)).

LeD LeD
Proposition 3.6 Let Q:S — H =T(v) be a rule. We consider:

o I a database whose schema contains that one of S, 4

e the database J = Q(I),

e D a database whose schema is {T'} (the output schema of @),
e 1 a substitution on Var (D) such that (D) C J.

Then a Q-source for D exists, and we have a substitution o such that:

{Z) a(@'(D)) CL
n) (D) C Qa(Q™H(D))).

If moreover 1 is ground, then J is ground, and o may be chosen as a valuation.

Proof. We keep notations of definition 3.4: the renamings py, for L € D, the set V' = Var(S)
of variables that occur in @, and U = {p substitution | u(L) = u(pL(H)) V L € D}.

For every L € D, we have u(L) € u(D) C Q(I), hence by definition 3.1, for every L € D, we
can assume a substitution v, such that v, (S) C T and p(L) = v (H).

For every L € D, the substitution p;' is well-defined since p, is injective, and therefore we
can define substitution on pr(V) by ¢r(u) = v (p;'(u)). That is, for every variable w € V/,
or(pr(w)) = vp(w). Now define ¢ = U{¢ | L € D}, the substitution which equals ¢ on
each set of variables pr(V). ¢ is well-defined since these sets of variables are disjoints by
construction of renamings pr. Then, V L € D we have vy (H) = ¢r(pr(H)) = ¢(pr(H)).

It follows V L € D, ¢(pr(H)) = u(L). Consider substitution w = ¢ U u, which equals p on
Var(D), equals ¢ on sets of variables pz(V'), and is identity elsewhere. w is well-defined since
by construction of renamings, the sets pr (V') are disjoints from Var(D).

Then, V L € D, w(L) = p(L), and also w(pr(w)) = ¢(pr(w)) for every variable w € V.
Since Var(H) C V, this last equality gives us in particular w(p(H)) = ¢(pr(H)), and then:
VLeD,wpL(H)) =w(L), and so w € U.

Therefore using 3.5.1, we have 6 a most general element of U (that is a mgu for v and w),
hence we have a ()-source for D.

Then substitution a comes naturally: since 6 is more general than w, we can assume a
substitution a such that w = a0 6.

Now we prove points 2) and).

4 We may discard this assumption: if Schem(S) ¢ Schem(I), then J = Q(I) = 0, and “3 u such that
(D) C J” implies D =), then @~ (D) = (), and assertions of the proposition are in this case trivial ones.

6

1) Fix L € D. Using definition of «, we have w(pr(S)) = a(0(pr(S))). On the other
hand, we have seen, for every w € V, w(pr(w)) = ¢r(pr(w)), and then from 1.2, we get
w(prL(S)) = or(pr(S)). But for every w € V', we have also ¢ (pr(w)) = vp(w), and then
or(pr(S)) = vi(S). By transitivity, a(6(pr(S))) = v1(S). Now by definition of v, we
have v7(S) C I, and then, using 3.5.3, we deduce a(Q (D)) = U a(f(pL(S))) C L.

LeD

12) Fix again L € D. We have seen p(L) = ¢(pr(H)) = w(pr(H)) = a(0(pL(H))) (the
last equality by definition of «). Let § the substitution which equals 6 o p;, on V', and
is identity elsewhere. Since Var(H) C V and T'(v) = H, we have u(L) = a(B(T(v))).
But, by 1.2 and 3.5.3, we have also 5(S) = (0o p)(S) CQ (D) = U O(pL(S)).

LeD

Then, from definition 3.1, we have 3(T'(v)) € Q(Q'(D)), so u(L) € a(Q(Q1(D))).

Since this is true for any L € D, we have then shown x(D) C a(Q(Q~*(D))).
Therefore the result follows from lemma 3.2.3: a(Q(Q'(D))) C Q(a(Q*(D))).

For conclusion of this proposition, it remains to see what happens if I is ground.
The fact that Q(I) is ground follows from lemma 3.2.1.

Now we can define substitution o/ which equals « on Var(Q~!(D)), and which equals some
arbitrary constant on other variables.

Then o/ (Q7'(D)) = a(Q~(D)), so 1) and 12) remain true for o’, and since a(Q (D)) C I
with T ground, the values of o/ on Var(Q~!(D)) are constants. Then o' is a valuation.

And therefore o can actually be selected as a valuation (as o).

4 Constraints

We adapt here definitions and lemmas from [1], p. 216-219 (dependencies) and p. 173-177
(chase), but also from [2], section 3. Notice that here “dependency” is a synonym for “con-
straint”. We consider here only dependencies which are full and single-head. This includes all
classical dependencies (except inclusion dependencies) such as functional, multi-valued, and
join dependencies. As in [2], dependencies may contain constants.

Definition 4.1 A full (single-head) dependency o is a first-order logic sentence, that we
write:
c: B—-K

where the “body” B = {B1(v1),. .., Bm(vm)} is a database, and the head K 1is:

- either T'(w) a T-atom with Var(T'(w)) C Var(B), in this case we call it a “ftgd” (full
tuple generating dependency),

- either e; = f; with e;, f; € Var(B) U Dom, in this case we call it a “fegd” (full equality
generating dependency).

Notice that in fact a ftgd is nothing but a rule.
As a shorthand for full single head dependency, we will use “dependency”, or “constraint”.

7

Definition 4.2 Let o be a constraint, with previous notations. We say that a ground
database 1 satisfies o, and we write I |= o, when for each substitution p such that u(B) C 1,

we have:

- if o is ftgd, then u(T(w)) €1,

- if o is fegd, then p(e;) = pu(f;).
Let Y. a set of constraints. We say that a ground database 1 satisfies ¥, and we write I = X,
if for all o € 3, we have I = o.

Remark 4.3

1. We only consider satisfaction for ground databases.

2. In the preceding definition, we can impose that substitutions u are on Var(B) since others
variables are irrelevant.

Moreover, since I is supposed to be ground, we may replace p “substitution” by p “valuation”.
3. When there is no substitution p such that pu(B) C I, for example when Schem(B)
Schem (I) (cf. lemma 1.5.2), then the definition says that I = 0. A particular example of this
is when B # () and I = (). Then I |= 0. Assume now B =). By our definition, o must be
a ftgd o : {} — T'(w), where w is a tuple (no variables). Then let I be a ground database.
We have obviously I = 0 <= I D {T(w)}, (hence any ground database I satisfying o is
nonempty).

4. Let o be a ftgd, and I be a ground database. Using definition 3.1 and previous point 2,
we have: o(I) = {u(T'(w)) | p is a substitution on Var(B) and u(B) C I}. Then obviously:

IFo<= oI CL

One can also write this is equivalent to: T U ¢(I) = I, which is exactly — in case of ground
databases, and except that here B need not to be unirelational — definition 6 of [2] concerning
satisfaction of constraints.

5. Let now o be a fegd. Then I = ¢ <= there is no valuation p such that u(B) C I and
p(e;) # p(fj). On the contrary, I & 0 <= there is a valuation p such that ¢(B) C I and
p(e;) # p(f;). Again, this is exactly — in case of ground databases, and except that here B
need not to be unirelational — definition 6 of [2].

Lemma 4.4 Let 0 : B — K be a dependency, and J be a ground database.
Assume that for all p valuation such that p(B) C J, there exists a (necessarily ground)
database J,, satisfying o and such that p(B) C J, CJ. Then J also satisfy o.

Proof. In case where there is no valuation g such that p(B) C J, the result is obvious since
previous remark 4.3.3.
Assume there exists valuation(s) u such that u(B) C J. We want to verify that for such a
valuation we have:
- if o is ftgd, then u(T(w)) € J,
- if o is fegd, then p(e;) = p(f;).
But by hypothesis we have p(B) C J,,, and J,, satisfy o, then by definition of satisfaction:
if o is ftgd, then pu(7'(w)) € J,, and if o is fegd, then p(e;) = pu(f;).
Now since J,, C J, the verification is done.

Note. If J, C J databases, with J ground, then J, is necessarily ground since in that case,
using 1.1.2, we have Var(J,) C Var(J) = 0.

Definition 4.5 Applying dependencies (direct adaptation of definition 7 from [2]).

We consider here the set of ground databases G partially ordered by inclusion, and we extend
it with O an artificial element which contains (for the extended inclusion order) any element
of G (as in [2], def. 7). For convenience O is also called “ground database” (but the notion
of satisfaction is not defined for O).

Let 0 : B — K be a constraint (with previous notations), and 1 # O be a ground database.
We set W = {u valuations such that ;1(B) C I}.

a) In case where o is a ftgd, we set the result of applying o to I to be the (ground) database
I' =TUo(I). Notice that if W = 0, we have o(I) = 0, then I' = 1, and on the other
hand we have already said (remark 4.3.3) that in this case 1 = o.

b) In case where o is a fegd, we set the result of applying o to 1 to be the (ground) database
T — {D if 1o,

Lif I=o0 (for instance when W =10).

Lemma 4.6 Let 1 # [be a ground database and o a dependency.

a) If1 = o, then applying o on I produces 1.
b) LetT be the result of applying o on 1. We have I CT'.

Proof.

a) This is obvious for o a fegd, and this is a direct consequence from remark 4.3.4 for o a
fted.

b) Obvious with previous definition.

Definition 4.5 (continuation) Chasing.

Now let &2 be a set of constraints. A chasing sequence (I;) of I by X is a set of databases
where Iy = I, and where each 1,1 s obtained from 1 by applying some dependency from
Y. We say that a chasing sequence is finite when we cannot find a dependency o € X which
produces a new database when applied to the last element of the sequence. In that case, the
length of this sequence is trivially the number of distinct databases in the sequence, and is
written: length((Ik)kzown) (where Iy, C Iy for all k=0,...,n).

Note. In [1], p. 174-175, the chasing procedure is defined on tableau queries (without con-
stants), and extended in ex. 8.27 p. 190 to tableau queries with constants: if the chasing
procedure tries to identify two distinct constants, the result is a new tableau query denoted
Tt Which corresponds to the query producing empty output whatever input instance. In [2]
(def. 7), the summary of a tableau query is dropped, hence the chase procedure applies to
general tableaux (including constants and variables). Again when the chase tries to identify
two distinct constants, then the resulting tableau is materialized by a new symbol [J which
is assumed to be a top order element of the set of tableaux for the partial preorder <.

Here we apply the chase procedure to databases, hence not only to tableaux (unirelational
databases), but only on ground databases. As we will see, all lemmas and theorems from [2]
section 3.2, apply almost directly in our case.

Definition-theorem 4.7 Let 3 be a set of constraints and 1 [be a ground database.

1. All chasing sequences of 1 by X are finite.
2. All chasing sequences of 1 by X, which are maximal with respect to length, terminate
with the same last element. We write this one Chases(I).

Proof. This is particular case from [2] (lemma 6 and theorem 2). It suffices to replace “x”
by “C” and “~” by “=" (and of course to be convinced this is legal). Point 2 is the Church-
Rosser property. In fact theorem 2 follows from lemma 6 and also from lemmas 7 and 8 which
are true in our special case.

Example 4.8 We take I = ().

Let ¥ = {09,01}, with 0g : {} — T(a,b), and oy : T'(z,y) — x = y.

Then the only maximal chasing sequence is: I = {} € {T'(a,b)} C 0. And Chasex(I) = [J.
Notice that if we have taken) instead of [J in definition 4.5, then the chasing procedure never
terminates in this example.

Lemma 4.9 Let 3 be a set of constraints and 1 # O a ground database.

1. I C Chasex(I).

2. If1E=3%, then Chasex(I) =1 (and all chasing sequences are of length zero).

3. If Chasex(I) # O, then Chasex(I) = X.

4. 1If J # O s a ground database which satisfy ¥ and such thatI C J, then Chase x(I) # O
and Chase x(I) C J.

Proof.

1. Direct consequence from lemma 4.6 b). (Or lemma 6 point 1 from [2]).

2. Direct consequence from lemma 4.6 a).

3. This results immediately from lemma 6 point 2 of [2].

4. We prove this result explicitly here, since it is slightly different from lemma 7 of [2]. (But
this is the same idea).

Let I=Ip, CI, CI, C... CI, CIzy; C ... a chasing sequence starting from I. Raisoning
by induction, we assume I # O and I, C J. (this is true for I = I,). It suffices to verify the
same for I,;. Let 0 : B — K, 0 € ¥, be the dependency which produces Iy, from I. If o
is a fegd with K replaced by e; = f;, by remark 4.3.5: I;, = o signify that 3 valuation p such
that u(D) C Iy and p(e;) # p(f;). As Iy € J we have same valuation p such that u(B) C J,
and p(e;) # pu(f;), that is: J = o, which is impossible since by hypothesis J = ¥. Hence in
case o a fegd, we have I, = I.

Now assume o is a ftgd, so that by definition Iy = I U o(I}).

We have I, C J and then o(I;) C o(J) (lemma 3.2.2). On the other hand, since J |= o, we
have also o(J) C J (remark 4.3.4), and therefore Iy C J, which proves our assertion.

Definition 4.10 Let C be a set of constants. A constants’renaming for the constants in C
is a one to one function f from C to f(C), that we extend to an injective function from Dom
to Dom. Given f a constants’renaming, we define f(X) for X a tuple, a ground atom or a
ground database, exactly in the same way of (1.0).

10

Lemma 4.11 Let I and J be ground databases, both distinct from .
Assume there exists a constants’renaming f from Dom(I) to Dom(J), that we extend to an in-
jective function on Dom and such that f(I) = J. For convenience we write in that case: T ~ J.

1. Let @Q : S — T(v) be a rule. Assume that f is identity on Dom(Q), that is on all
constants occuring in Q. Then Q(I) ~ Q(J).

2. Let 0 : B — K be a constraint. Assume f is identity on every constant occuring in o.
Then 1o <= Jo.

3. Let 3 be a set of constraints. Assume f is identity on every constant occuring in the
Y’s constraints. Then Chasex(I) ~ Chasex(J).?

Proof.
1. Recall definition 3.1 with lemma 3.2: Q(I) = {v(T'(v)) | v valuation with v(S) C I}.
Then f(Q(I)) = {f(v(T(v))) | v valuation with v(S) C I}, and we will prove:

Q) =Q(T), where Q(J) = {u(T(v)) | p valuation with u(S) C J}.

- Inclusion 'C’. For f(v(T'(v))) € f(Q(I)), we define pu which equals for on Var(S)UDom(Q),
which equals some constant on the others variables and is identity on others constants. Then

f(w(T(v))) = p(T(v)) and p is a valuation (here we use the hypothesis: f is identity on
Dom(@®). Moreover v(S) CI = u(S) = f(v(S)) C f(I) =J.

- Inclusion 'D’". Let u(T'(v)) be an element Q(J). We define v which equals f~ou on Var(S),
and which equals some constant on the others variables and is identity on Dom. First we
verify u(T'(v)) = f(v(T(v))). Let x an element of Sym(7T'(v)). If € Var(S), since u(S) C J
we have pu(r) € Dom(J), then f(f~'(u(z))) = u(z). If z is a constant, then z € Dom(Q),
hence pu(z) = x = v(x), but also f(z) = z, then u(z) = f(v(x)).

Now v is a valuation, and we have u(S) CJ = v(S) = f~1(u(S)) C f~'(J) =L

It remains to see that f maps Dom(Q(I)) to Dom(Q(J)), but this is clear since we have
f(QI) =Q(J) and f is identity in Dom(Q).

2. Let 0 : B — K be a constraint with f identity on Dom(o).

First case. o is a fegd: B — e; = f;, where ¢;, f; € Var(B) U Dom.

Assume I = 0. We will prove J = 0. Let p be a valuation such that u(B) C J. We want to
verify p(e;) = p(f;)-

Asin 1, consider valuation v which equals f~1ou on Var(B), and which equals some constant,
on the others variables and is identity on Dom. Then v(B) = f~!(u(B)) C f~*(J) = I, hence
v(e;) = v(f;) since I |= 0. So we have f~(u(e;)) = f~'(u(f;)) and by applying f to this
equality we get p(e;) = p(f;).

Assume now J = o and we want to prove I |= 0. Let v be a valuation such that v(B) C L.
As in 1, define valuation g which equals f or on Var(B) U Dom(c), equals some constant on
the others variables and is identity on others constants. (Here Dom(c) = Dom(B)).

Then u(B) = f(#(B) € f(T) = J, and then p(e:) = p(fy), that is f(v(eo) = f((f;)). We
apply then f~! to this last equality and get v(e;) = v(/f;).

50r equality if one (then both) equals OJ.

11

Second case. o is a ftgd.

Assume I = 0. We have already seen in remark 4.3.4 this is equivalent to o(I) C I. We want
to verify if also o(J) C J. But using 1, we get o(J) = f(o(I)) C f(I) = J.
Conversely assume J |= o, that is o(J) € J. Then o(I) = f~1(c(J)) C f7}(J) =L

3. It suffices to verify that applying one step of chasing to both ground databases I and Jj
such that I ~ Ji, produce two new ground databases I, and Jj; such that Iy, ~ Jxq.
Let o be the constraint of this chasing step.

If o is a fegd, we have simultaneously [I;; = Iy or Iy; = O] and [Jgq = J or Jipyy = O],
since with 2: Iy o < J; E 0.

If o is a ftgd, we have I,y = I, Uo(I;) and Ji1 = Jp Uo(Jg). By hypothesis I, ~ J;, (with
function f), then using 1 with rule o, we have also o(I)) ~ o(Jx) (with same function f).
Thus we deduce using this injective function f that Ip,q ~ Jgiq.

Examples 4.12

1. We see here that the lemma is not true if we do not assume f identity on the constants
occuring in the body of Q.

We set I ={R(b,c)}, J ={R(a,c)} and Q : R(a,x) — R(z,x).

Then I ~ J with f: {b —a, c = ¢, a—d #a}, but Q(I) =0 and Q(J) = {R(c,c)}. Hence
Q1) 2 Q(J).

2. We see here that the lemma is not true if we do not assume f identity on the constants
occuring in the head of Q).

We set I ={R(a,b)}, J={R(e, f)} and Q : R(x,y) — R(a,x).

Then I ~ J with f:{a — e, b— f, e =€ #e, f— f #f}, but QI) = {R(a,a)} and
Q(J) = {R(a,e)}. Hence Q(I) £ Q(J).

5 Algorithm

Recall the general problem from introduction that we specialize here :

- onerule Q) : S — T, which represents our source-to-target rules, and where we denote
Schem(S) = {51, 5,...,5,} as the source schema, and Schem(T) = {T'} as the target
schema,

- on source and target schemas we consider respectively >, and ¥, sets of constraints,
and here we assume for ¥, that all of its bodies’schemas are {T'}.

We want to decide the following question:
For all I ground databases such that I = X, do we have Q(I) = X, 7

We provide now an algorithm for deciding this question.

The algorithm consists in repeating the following procedure for all constraints in >3; succes-
sively. If for one the procedure says ’no’, then stop: the answer of our algorithm is ’no”’.
Else (that is always obtain ’yes’ in procedures) then our algorithm says ’yes’.

Notice that procedure exits when it asserts 'yes’ or 'no’.

12

We fix 0 : D — K a dependency in .
We define the set C = Dom(Q) U Dom(o) U,,ex, Dom(o;), that is the set of all constants
occuring from the fixed context.

Note : When Q-source for D exists:
Dom(Q~(D)) = Dom(Uzepf(pr(S))) € Dom(S) € Dom(Q) C C.

Procedure (for the dependency o).

1. Calculate the Q-source Q~'(D). If the mgu needed for this does not exist, then say
’yes’ and exit.

2. Fix a set D of constants one-to-one with Var(Q‘l(D)) and disjoint from C. Let
a € Dom be some arbitrary constant. Consider the (finite) set V of all valuations which
equal a on variables outside Var(Q‘l(D)), and take their values on Var(Q_l(D)) in
the following set: D UC.

For all v € V, calculate Chase s, (v(Q~'(D))). If all these Chases result in [J, then say
’yes’ and exit.

3. For each preceding valuation v such that Chase s, (v(Q~'(D))) # O, verify if
Q(Chases, (v(Q7'(D)))) = o. If not (for one), then say ’no’ and exit, else say ’yes’
and return.

Theorem 5.1 Previous algorithm gives the correct answer.

Proof. We will prove the following (with dependency o of the preceding procedure):

- if procedure says ’yes’, then V I ground database satisfying ¥, we have Q(I) = 0(6.1.1)
- if procedure says *no’, then 3 I ground database satisfying X, such that Q(I) £ o (6.1.2)

Now let ¥; = {o1,...,05}. Assume (6.1.1) and (6.1.2) are true with o;’s.
In case where procedure says ’no’ for some o;, j € {1,...,s}, then 3 I ground database
satisfying 3, such that Q(I) & o, so by definition of satisfaction: such that Q(I) & 2.

Then in that case, our algorithm says ’no’, and the answer to the question is actually ’no”’.

In case where procedure says ’yes’ for all o;, j =1,...,s, we have:
Vije{l,...,s}, VIground database, I =X, = Q(I) k= o,
that is by definition of satisfaction:
V I ground database, I = X, = Q(I) | X

So in that case, our algorithm says ’yes’, and the answer to the question is actually ’yes’.

Then, to prove the theorem, it suffices to prove (6.1.1) and (6.1.2).

Proof of (6.1.2).

The only case where procedure says ’no’ is when there exists valuation v € V such that
Chase s, (v(Q~(D))) # O and such that Q(Chasey, (v(Q"*(D)))) K o.

Therefore, considering ground database I = Chases, (v(Q~'(D))), we have I | X, (use
lemma 4.9.3), but Q(I) ¥~ o.

13

Proof of (6.1.1).

Recall @ : S — T'(v) the rule we consider.
We assume procedure says ’yes’ and we want to prove the assertion:

V I ground database, I =X, = Q(I) = 0.

Notice first that if there exists no ground database I such that I = X, then this assertion is
obviously true. We call this eventuality X, unsatisfiable. As we will see in the following case
2, this corresponds to the eventuality :

“for all v € V, we have Chasey, (v(Q~'(D))) =0.

In the following we consider I a ground database satisfying ¥; (and then assume it exists).

Case 1. Q-source Q' (D) doesn’t exist (the first *yes’ of the procedure).

First observe that we can reformulate the first part of proposition 3.6 in the following manner:

Given a rule @ : S — T'(v), and a database D with schema {7}, if we have a
database A such that Q(A) = D, then a @-source for D exists.

Hence in this case 1, we deduce from this : there is no database A such that Q(A) = D.
Then for our ground database I, there is no valuation p such that (D) C Q(I), and then
from remark 4.3.3, we deduce Q(I) = o.

Case 2. Q~'(D) exists (all remaining ’yes’ in the procedure).

We use D a set of constants one-to-one with Var(Q_l(D)), disjoint from C, and an arbitrary
constant ¢ € Dom. We consider the (finite) set V of all valuations which equal a on variables
outside Var(Q (D)), and take their values in DUC on Var(Q~'(D)).

We have assumed I = X, and we want to prove J = Q(I) = o.
For this we take p a valuation such that u(D) C J.
Then we are in the situation of proposition 3.6, with I ground database.

a(@~1(D)) C
u(D) € Qo (Q (D).
L

Now, since I = X, using lemma 4.9.4, we get Chase 5, (a(Q_l()))
this Chase is not [J), and then using 4.9.1 and monotonicity of ¢ we have:

#(D) € Q((Q7'(D))) € Q(Chasex, (a(Q™'(D)))) C Q) =
We set J,, = Q(Chase s, (a(Q~1(D)))).

Consider the set &(Q_I(D)). Since is I is arbitrary, this set can contain arbitrary constants,
like constants from Dom(Q), Dom(c;) where o; € ¥, or even from Dom(o).

But since our definitions of D, C and V, it exists a valuation v, € V and a constants’renaming
f such that :

(2@ (D)) = a(Q (D))

f is identity on C,

Vo (Sym(Q (D)) exactly map (in one-to-one way by f) to a(Sym(Q (D)),

f is injective on Dom.

Therefore we have seen we can choose a valuation o such that: {

it is understood

*

R e

14

Then by lemma 4.11.8 we have Chasey, (vo(Q'(D))) ~ Chasey, ((Q~!(D))), and since
the second is not [, also the first is not.

Then we see here that condition “for all v € V, Chase s, (v(Q~*(D))) = O implies it doesn’t
exist I ground database which satisfies Y, case already discussed.

Now, again using lemma 4.11, our hypothesis Q(Chase s, (VQ(Q_l(D)))) E o implies that we
also have J,, = Q(Chasey, (a(Q*(D)))) = o.

Conclusion: lemma 4.4 with J,, gives us that J = o.

Examples 5.2 Notice that the following may be obvious but I consider it advisable.
1. Copy case. We consider the rule @ : S(x1,...,2,) — T(z1,...,x,)

On the source we have a set of dependencies X3 = {0y,...,0,} (we assume their bodies are
on schema {S}), and on the target a set of dependencies ¥y = {7,..., 7.}, (where we also
assume their bodies are on schema {T'}).

We assume that none of the dependencies in X, (resp. ¥;) is a logical consequence of other
dependencies in X, (resp. ;). Then:

- either Y, is unsatisfiable,
“V I ground database, I = X; = Q(I) | ;7 is true < { - either p > r and o; = 7; where
we replace letter T" by letter S.

In fact the meaning of the right hand of this equivalence (when X is satisfiable) is: “the
dependencies in ¥; must appear in >, modulo the replacement of letter T' by letter S.

Sketch proof (easy):

<) Assume Y is satisfiable and let I be ground database such that I = 3,. Then Q(I) is a
ground database where we replace letter S by letter 7. Then I = ¥, = Q(I) = %.

=) Assume Y is satisfiable. Let 7; a dependency of 3, which does not appear in ¥,. It suffices
to be convinced that we can find a ground database I such that I = X, but I = Q~!(7;), where
Q'(7;) is a shorthand for the dependency 7; where we have replaced letter T by letter S.
Then obviously Q(I) = 7, hence Q(I) I~ X, and this contradicts the hypothesis.

And now, what about our algorithm, when we are in case of previous equivalence 7

For simplicity of exposure, assume >, = {o} and ¥; = {7} where:

o:D; — K, with D, = {S(z1),...,S(2,)} and K, replaced by either e; = f;, either S(¥),
7: Dy — Ky, with Dy = {T'(z}),...,T(2,)} and K, replaced by either e; = f;, either T'(¥).

We have Q7 '(D;) = Dy, and on the other hand X, and ¥; are simultaneously satisfiable or
unsatisfiable. Assume they are satisfiable. We have with obvious notations: V v, € V,

Q(Chase s, (1,(Q71(Dy)))) = Q(Chase ,(vo(Dy))) = Chase , (v,(Q(D,))) = Chase ,(v(Dy))
and this last one satisfy 7 (4.9.3). Then our algorithm actually says ’yes’.

2. Let Q : S(z,y) — T(x,y) be the rule, and ¢ : D = {} — T'(a,b) be the dependency on
the target (we may consider that the schema of the empty database is {T'}).

Then Q@ '(D) = (), and V = {v}, where v is the valuation which equals arbitrary constant a
on Var. We have also u(D) = @) and v(Q~1(D)) = a(Q~}(D)) = 0.
Then Chasey, (v(Q~!(D))) = Chasey, (a(Q~!(D))) = Chasey, (0), which depends on X,.

15

We have already seen in 1, for such copy-case that the answer to the question is ’yes’ if and
only if either ¥ = {0}, where o, : {} — S(a,b), or either if 3 is unsatisfiable.

Verify correctness of our algorithm here.

- If X, = 0, the answer is *no’. On the other hand (our algorithm): Chase s () = 0, then
Q(Chase s, (0)) = 0, which doesn’t satisfy o (4.3.3). Then our algorithm says ’no’.

- If ¥ = {o,}, the answer is >yes’. On the other hand (our algorithm): Chase s () =
{S(a,b)}, Q({S(a,b)}) = {T'(a,b)} which satisfies 0. Then our algorithm says ’yes’.

- If ¥ = {0} where o, : {} — S(e, f). Then the answer is ’no’, and we have
Chaseys, (0) = {S(e, f)}, and Q({S(e, f)}) = {T(e, f)} which doesn’t satisfy o, then our
algorithm says ’no’.

-If ¥y = {05,001}, where oy : S(z,y) — = = y. The answer is *yes’ (X, is unsatisfiable),
and we have Chasey () = O, so that our algorithm says ’yes’.

3. We give here example of not copy-case. Let @ : S(x,y) — T(z, x) be the rule, and consider
only one dependency respectively on source and target: ¥ = {05} and ¥, = {0;}.

either z =y
We set o5 : S(z,y) >z =a,and 0y : D ={T(z,y)} — K, with K = {either T(x,x)
either T'(a, a).
It is clear that we have: V I ground database, I =¥, = Q(I) = X..
Verify that our algorithm says ’yes’.

First we calculate @-source for D. We search mgu 0 such that 0(T(x,y)) = 6(T(z1, 1)),
where we use renaming p1(Q) : S(x1, 1) — T'(z1,21).
We have x = x1 = y, and we may choose x for a representative of this class.
Then Q'(D) = 0(p1({S(x,9)})) = 0({S(z1,51)}) = {S(z,)}
Now we search for valuations v € V.
We have Dom(Q) = (), Dom(oy) = {a} and Dom(o;) = {a} or 0.
Then C = Dom((Q)) U Dom(cy) U Dom(o;) = {a}.
We need a set of constants D disjoint from C and one to one with Var(Q (D)) = {z, y: }.
Set D = {e, f}. Then the (finite) set of valuations v is defined by:

V z € Var\Var(Q'(D)), v(z) = a,

v(z),v(y1) €e DUC = {e, f} U{a}.
We have then here nine possibilities, we give all possible v(Q~!(D)):
{S(e,)}, {S(e,a)}, {5(f. e)}, {S(a,)}, {S(f, a)}, {S(a, f)}, {S(a, a)}, {S(e,)}, {S(f,)}
Now we have to calculate the Chase s, (v(Q~'(D))) for all v € V.
For those v(Q (D)) where the first component of the atom is not a, then the Chase is OJ,
and for the other ones the resulting Chase are themselves. Then, those who are not [J are
{S(a,0)}, {S(a.)}, {S(a, N}
Therefore the output by @ of these last three ones is {T'(a,a)}, which satisfy ¥;, and our
algorithm says ’yes’.

Examples 5.3 Here we give examples of ideas which would have greatly simplify the algo-
rithm, but which unfortunately do not work, or stay for the moment unproved.

16

Let us define a skolem valuation: this is a valuation which is injective on Var, and such that
the values it assigns for the variables in @), or ¥, or X, are not values of C.

First idea. Replace all the valuations v € V by only one skolem valuation on Q~!(D).

This doesn’t work as we will see in the following example:

Let @ : S(x,y) — T(x,y) be the rule, ¥, : S(z,y) =z =yand o : D ={T(z,y)} — T(a,a).
As already seen, in that case: “V I ground database, I = X3 = Q(I) |= ¢” is false. And then
our algorithm says ’no’. But now consider algorithm where we replace “V v € V...”, by “for
a fixed skolem v...”.

We have Q7 1(D) = {S(z,y)}. Fix the skolem v : {x — h,y — f}.

Then Chases, (v(Q ' (D))) = Chases, ({S(h, f)}) = 0. Hence this newer algorithm would
say ’yes’, and then it would be false.

Notice that our correct algorithm consider all valuations on {z,y} taking values in (for in-
stance) {h, f} = D, and then for I | X, and a such that o(Q'(D)) C I, we would find
v:{x — h,y — h} such that f(v(Q7'(D))) ~ a(Q~(D)).

For this v we have Chases, (v(Q'(D))) = {S(h,h)} E X, and Q(Chases, (v(Q~'(D)))) =
{T'(h,h)} £ 0.

Second idea. Here we try to stay “most general” as far as possible, that is: we specialize
with skolem only on last step, that is on Q(Chases, (Q~*(D))). (We use definition 8 of [2] for
the Chase on non-ground databases, here Q~!(D)). For the moment, the correctness of this
other algorithm remains unproved.

Let @ : S(z,y) — T(x,y) be the rule, ¥; = {0y, 02}, where:
{01 :S(z,a) — S(x,b)

o9 : S(x,a) — S(e, x)

As already seen (5.2.1), in that case: “V I ground database, I ¥, = Q(I) = 07 is true.

On the other hand we have:
« Q(D) = {S(z, 0)},
x Chases,(Q71(D)) = {S(x,a), S(z,b), S(c,z)},
* Q(Chases, (Q7Y(D))) = {T(z,a), T(z,b),T(c,z)}.
Now choose a valuation skolem on @Q(Chases, (Q~(D))), that is a valuation which replaces
variable x by some constant not in {a, b, c}. For instance take v : {x — e}.
Then v(Q(Chasex, (Q~*(D)))) = {T'(e,a), T(e,b), T(c,e)} which satisfy o, so our newer algo-

rithm would say correct answer ’yes’, and greatly faster in comparison to our algorithm.

and 0 : D ={T(z,a)} — T(z,b).

Comparison with our algorithm.

Let D = {e} one to one with Var(Q~!(D)) = {z} and disjoint from C.

We consider valuations v which take their values on Var(Q~(D)) in DUC = {a, b, ¢, e}.
Let I = Chaseyx, (v(Q~*(D))).

First one v : {x — a}. Then:

v(Q (D)) = {S(a,a)},
I={S(a,a),S(a,b),S(c,a),S(c,b),S(c,c)},
Q) ={T(a,a),T(a,b),T(c,a),T(c,b),T(c,c)} = o.

17

Second one v : {z — u}, where u is either b, ¢, or e (identical cases). Then:

/(Q1(D)) = {S(u,),
I={S(u,a),S(u,b),S(c,u)},

Q) ={T(u,a), T(u,b), T(c,u)} | o.

Hence our algorithm says also ’yes”’.

18

ANNEX

19

6 Auxiliary results

Corollary 6.1 (of proposition 3.6).
Let Q : S — T be a rule. Let D be a database whose schema is {T}.
We assume a QQ-source for D exists.

1. Q(Q'(D)) = D.
2. If 1 is a database such that Q(I) = D, then I = Q~1(D).
3. For every database 1, if Q(Q™1(D)) = Q(I) = D, then Q(Q~Y(D)) ~ Q(I).

(“Minimality” of Q(Q™'(D))).

Proof.

1. By definition Q(Q'(D)) = {u(T(v)) | u substitution on Var(S) and u(S) € Q~(D)},
and by 3.5.3: Q7'(D) =U{0(p(S)) | L € D} (f a mgu, cf. definition 3.4).

We will show that §(D) C Q(Q~'(D)) (which proves Q(Q~'(D)) 3= D).

Let (L) € (D), with L € D. From definition of 6, we have (L) = 6(p(T'(v))).

Define substitution p;, which equals 6 o py, on Var(S), and is identity elsewhere.

Since Var(T'(v)) C Var(S), we have 0(L) = ur(T(v)), but, using lemma 1.2, we also have
pr(S) =0(pr(S)) € Q7' (D). Hence O(L) € Q(Q'(D)), which proves our statement.

2. Let I a database such that Q(I) = D. Set J = Q(I). We have then p substitution on
Var(D) such that u(D) C J = Q(I). Then we apply proposition 3.6 which give us substitution
a such that a(Q (D)) C I. Of course if we consider substitution o’ which equals o on
Var(Q (D)) and is identity elsewhere, then from 1.2 we also have o/(Q~!(D)) C I. This
proves I = Q7! (D).

3. Assume Q(Q (D)) = Q(I) = D. The second comparison implies by 2: I = Q~'(D), so
by monotonicity of @ we get Q(I) = Q(Q (D), and then we conclude Q(Q (D) ~ Q(I).

Remark-examples 6.2 Let () : S — T be a rule and D a database whose schema is {T'}.

1. We give an obvious example where ()-source doesn’t exist.

2. @-source for D exists doesn’t imply: V v valuation, @-source exists for v(D).
3. @-source for D exist does not imply: V I database, Q(I) = D.

4. @-source for D exists <= 3 I database such that Q(I) = D.

5. -source for D exists with mgu 6 implies @)-source for (D) exists.

Proof.

1. Set D = {T(a,z)} and @ : S(x,y) — T'(b,y). Then we search for a unifier ;1 such that
w(T(a,x) = u(T(b,z1)). (Recall Q,, : S(x1,y1) — T(b,y1)). Then pu doesn’t exist (and U =
see definition 3.4).

2. -3. Set @Q:S(y) — T(a,y,y), and D = {T'(x,2',a)}.

Then Q-source exists for D, since it exists unifier p such that u(T(a,y,y)) = w(T(z,z’,a))
(we have necessarily pu(r) = p(z’) = p(y) = a) and this p is the only possible unifier, and
then is a mgu. Also Q7 '(D) = u({S(y)}) = {S(a)}.

But if we take v valuation such that v(z) = e, v(2’) = f, then v(D) = {T'(e, f,a)}, and we do
not have unifier y' such that p/(T(a,y,y)) = 1/ (T(e, f,a)) and then there is no mgu between
v(D) and T'(a,y,y), hence @-source doesn’t exist for v(D).

20

Now if we take I = {S(b)}, then Q(I) = {T'(a,b,b)}, and we cannot find substitution v such
that v(D) C Q(I). Hence for this (ground) database I we do not have Q(I) > D.
4. <) This is first part of proposition 3.6.

=) Use I = Q~}(D) and previous corollary, point 1.
5. Tt suffices to show there exists a database I such that Q(I) = (D), since previous point.
But in previous corollary we have seen #(D) C Q(Q (D)), hence obviously (D) < Q(I)
with I = Q~(D).

7 A very low-level proof of proposition 3.6

Here we give in details explanations of how to construct the substitution « (in fact a slightly
different «/) of proposition 3.6. We produce directly an o on Var(Q'(D)). This is very
low-level (and then less elegant), since it describes all possible configurations for the two
free-tuples we want to unify to obtain a ()-source. It came for me in hands first.

Lemma 7.1 Let u=(ey,...,e,) and v = (f1,..., fn) two free-tuples with same arity n.
Assume it exists 0 a mgu for uw and v. Let x, 2’ € Sym(u), such that x # ' and 6(z) = 6(2').
Then we have k € N*, and go, go, - - -, gr € Sym(u) U Sym(v), with x = go, ¥’ = gy, such that:

0(z) = 0(q1)
9(91) = 0(g2)
0(g2) = 0(g3)

0(gk-1) = 6(z')
and withV i € {0,...,k—1}, g; € Sym(u) (resp. Sym(v)) = g;11 € Sym(v) (resp. Sym(u)).

The integer k is called the length of the path between x and x’. In the particular case where x’

also in Sym(v) (07’ when x also in Sym(v)), then this length equals one, with x = go, 2’ = ¢;.

Notes.

1. Of course x and 2’ cannot be both constants. So at least or 2’ must be in Var(u).

2. We have a graphical interpretation of this lemma (see also figures).

We associate to each symbol a vertex (labeled with the symbol), and split this vertices into
two regions: left for Sym(u) and right for Sym(v). We put an horizontal edge between each
pair (e;,f;) (this symbolize 6(e;) = 6(f;)).

Now for h;, h; € Sym(u) U Sym(v), we add an edge between h; and h; if and only if h; = h;.
Then the interpretation is the following (which is straightforward to verify):

3 g;’s with go = x, gr = 2’

0(x) = 0(g1)
0(g1) = 0(g2)
and 0(g2) = 0(g3) — there exists a path in the graph

between z and z'.

0(gr-1) = 0(z')
and g; € Sym(u) = g;+1 € Sym(v),
[resp. gi € Sym(v) = giy1 € Sym(u)]

21

Figure 1. Here Sym(u) N Sym(v) = ()
We have x # 2/, y # v/, but 8(z) = 6(2') and we see the path between = and z’.

Figure 2. Here Sym(u) N Sym(v) # 0.
We have z # 2/, and 0(z) = 6(2’) by the path that we see between = and z’. A constant a
here shows that constants may intervene.

T . ° a

e3=a / > f3
Proof. (lemma 7.1)

So we consider z, 2’ € Sym(u) such that = # a2’ and 0(x) = 0(x').
Let y,y" be the corresponding symbols in the free-tuple v, that is: z = u[i] = y = v[i], and
' =ul[j] = v = v[j] (for some 7,7 € {1,...,n}).
We have trivial cases if at least one of these equalities occurs: = =y, 2’ =y, y = v/'.
Assume y = ¢/ for example. Then the path announced is simply given by: 0(x) = 6(y)
0(y) = ().

Now assume that we have none of these trivial cases, and more generally assume there is no
path in the associate graph (previously described) between x and z’.
This implies that the variable 2’ (and then also the symbol ') does not occur in each path
containing x (if there exists at least one).
On the other hand z’,3’ may belong to a collection P of paths, each one not containing x
(here a path is a set of symbols as we identify vertices and their symbol labels).
Necessarily there is no common symbol between P and paths containing x, otherwise there
would be a path from z to z’.
Thus we can define a substitution ' like this:

Vee Sym\P, 0(e) =0(e),

VeeP, §(e) =h e Var, with h # 0(x).

22

Then clearly ¢ is a unifier for u and v.

But 6 is supposed to be a mgu for u and v, so it is more general than the unifier 6, and we

have substitution v with ¢/ = v o 6.

Then, using this, the equality 6(z) = 6(z’), and the definition of §', we get:
h=0(z")=vl(z)) =v(l(z)) = ¢ (x) = 0(x) which is contradiction.

Hence we conclude that there must exists a path between x and z’.
Remark 7.2 On the preceding lemma.

1. Let u = (z,2'), v = (y,y'), with all of these four variables different from each other. Then
we have a unifier v for u and v defined by: v(x) = v(z') = v(y) = v(y') = a € Dom. This
example shows that for a unifier which is not a mgu, we do not have a path as announced
(between x and z’), although v(z) = v(z’). So the condition “mgu” is required.

2. Particular case. Assume Var (u)NVar(v) = (). Then the only possibilities for having “diag-
onal” edges between Sym(u) and Sym(v) in the graph, is when Dom(u) N Dom(v) # (). An
instance of this is chosen for figure 2, and moreover we have taken a constant belonging
to a path between x and z’.

3. General case. For the clearness of the proof we have taken x,z’ “on the same side”, that
is here for instance in Sym (u), but obviously the result is still valid if they are not, it
suffices to exchange the roles of x and y (which are linked up by an horizontal edge).

Proposition 7.3 Recall proposition 3.6: we consider a rule Q) : S — T and

e I a database whose schema contains that one of S,
e the database J = Q(I),
e D a database whose schema is {T'},

e /i a substitution on Var (D) such that (D) C J.

Assuming that a Q-source for D exists, then we have a substitution o on Var(Q (D)) such

») (@ (D)CL
that {u) 1(D) € Q(a(Q1(D))).

If moreover 1 is ground, then J is ground, and o may be chosen as a valuation.

Proof.
We use here notations of remark 3.5: we write D = {T'(vy),T(v2),...,T(vy,)} for some m > 1,
and write then p; the previous renamings (i = 1,...,m). We write also v= (vy,...,v,,) and

= (p1(v),...,pm(v)) the concatenate free-tuples such that 0(v) = (w).
For all i € {1 m}, set V; =Var(v;) and W; =Var(p;(v)) and let {V = UL, Vi =Var(v),
PR) 1 i) i W = UleV —VELI‘()
With these notations we have the following facts:

1. Reformulation of 3.5.3: Q~'(D) = (U™, p:(S)) = U™, 0(pi(S)).

2. V1<, j<m,1#j = p; (Var)) Np; (Var) = (). This is obvious since using lemma
1.1.5 we have p;(Var(T)) C p;(Var(S)) for all i € {1,...,m}.

23

3. Free tuples v and w have disjoint sets of variables. Proof. The first’s variable set is
Var(D), the second is Var(U, p;(T)). Then, using lemma 1.1 (2, 3 and 4), we have:
Var(U, pi(T)) C Var(U™, p;(S)) C U, p;(Var(S)), and this last set has empty inter-

section with Var(D), since Vi € {1,...,m}, p;(Var(S)) N Var(D) = 0.
4. From 2.6.1 we deduce: 6 is a substitution on V' U W (that is: elsewhere = identity).
5. We have V = Var(D), and W; = Var(p;(T)) for all i € {1,...,m}.

6. Previous point 3 says VNI = (), and we deduce from previous point 2 that W; N W, = ()
forall i # 5 € {1,...,m}, (with 1.1.4).

Fix i € {1,...,m}, and consider the rule @Q; : p;(T) «— pi(S).

By lemma 3.3.3, we have Q;(I) = Q(I).

By hypothesis we have a substitution p such that (D) C J and we have J = Q(I) = Q;(1).
Then each element (7T (v;)) € u(D) belongs to Q;(I). Then by definition of @Q;(I) we have a
substitution v; on Var (p;('T)) such that pu(7(v;)) = v;(T(pi(v))) with v;(p;(S)) C 1.

Since W = U™, W; = U", Var (pl(T)) is a partition, we can define a substitution v on W like
this: Vy € W, Junique i € {1,...,m} with y € W;, and we set v(y) = v;(y).

Then, in terms of free-tuples and using (1.0), we rewrite u(7(v;)) = v;(T(p;(v))) under the
form p(v;) = v(p;(v)), and since this relation is valid for all ¢ € {1,...,m}, using lemma 1.3,
we deduce: p(v) = v(w).

Now (using lemma 1.1) we define:
S= U?llpi(Sym(S)) = U?’Llsym(pi(s)) = Sym(Uity pi(s))a
and we will prove the following fact:

Vy,y € SUDom, 0(y) =0(y) = v(y) = v(y) (7.3.1)

Let then y,y" € S UDom, and such that 6(y) = 6(y’"). We will consider all possible cases.

First case. We assume y,y’ € 8, with neither y, nor y’ constant.

Then (with 1.1) we have y,y’ € Var(U, p;i(S)) = U, Var(p;(S)) = U, p; (Var(S)).
Subcase 1. We assume y € p;(Var(S))\W; and ¢’ € p;(Var(S))\W;.

That means y (resp. y') does not belongs to the head of the rule Q); (resp Q);).
As v; and v; are respectively valuations on Var(p;(T)) and Var(p;(T)), we have:

v(y) =vi(y) =y and v(y') = v;(y') =y,
Now y € V = Var(D) is impossible since Var(D) N p;(Var(S)) = 0, and y € W is also
impossible, else there would be k # i, such that y € Wy, but (with lemma 1.1 points 2 and 4),
we have W, = Var (pi(T)) C Var (p(S)) C pr(Var (S)), and by hypothesis this last set has
empty intersection with p; (Var (S)).
Then y ¢ V U W, and the same holds for y'.
But as already noticed, 6 is a substitution on V' U W, then 0(y) =y, and 6(y’) = v/'.
Conclusion: v(y) =y =0(y) =z, and v(y') =y =0(y') = 2/, with z = 2/

24

Subcase 2. We assume y € p;(Var(S))\W; and y' =€ W;.

We have seen in first subcase that 8(y) =y ¢ V U W. On the other hand y' € W, CV UW.
Using lemma 2.6.1, we have 0(y') € Sym(v) U Sym(w). But 6(y') = 0(y) = y, and y cannot
be a constant since p; is a renaming of variables. Then 6(y") € V U W, but 6(y) not.
Conclusion: that proves this case is empty.

Subcase 3. We assume y € W; and y' € Wj.

In that case, the first possibility is that y = v/, here nothing to prove, we have v(y) = v(y').
Assume y # . As 6(y) = 0(y'), we are in situation of lemma 7.1 with free-tuples v and w.
Then we have k € N*, and g¢o, g2, . .., gx € Sym (V)USym (W), with y = go, ¥ = g, such that:

0(y) = 0(n
983) 29((992) with Vi € {0,...,k —1}
0(g2) = 0(g3) gi € Sym (V) = gi41 € Sym (W)

resp. :
: gi € Sym (W) = giy1 € Sym (V).
0(gr-1) = 0(y')

Recall that we associate a graph to the symbols in Sym(v) U Sym(w), such that V 1 < 1 < #v,

we have an horizontal line between Vv[l] and wl[l]. These horizontal lines represent the fact

0(v) = 0(w), but here also the fact u(v) = v(w).

Recall also that we add edge between e, f € Sym(v) U Sym(w) if and only if e = f.

For here, we have already noticed that V NW = (), and then remark 7.2.2 says that the only

possibilities for having diagonal edges in the graph is when Dom(V) N Dom(w)## 0.

Now we have seen in lemma 7.1 that the previous list of equalities represents a path between
y and ¢ in the graph.

Consider two consecutive equalities (i € {0,...,k — 2}) in this previous list, which represent
portion of this path:

{9(91‘) = 0(gi+1)

0(gir1) = 0(giv2)

With respect to previous considerations, there is only four situations they may represent,
which we have pictured below. As in lemma 3.7, we have separate Sym(w) on the left side
and Sym(V) on the right side, and we have mentioned below each picture the corresponding
situation for g;, gi11, git2-

Figure 3. The four possible portions of path between y and 3’.

9i » Ji+1 Ji+1 e——— o Ui 9i gi+1 Gi+1 9;
Jit2e— ¢ Gi+1 Jitl1 e o Git+2 Jit+1 Z Gi+2 Gi+2 :X Ji+1

gi € Sym(w) gi €Sym(V) gi € Sym(w) gi €Sym(V)

gi+1 € Sym(V) gi+1 € Sym(W) gi+1 € Dom giv1 € Dom

itz € Sym(W) gir2 € Sym(V) it € Sym(V) gir2 €Sym(W)

25

In each case, the corresponding equalities, using u(v) = v(w), are:

v(gi) = 1(gi+1) 11(9:) = v(gi+1) v(gi) = 1(gi+1) 1(g:) = v(gi+1)
1(giv1) = v(gira) v(giv1) = p(giv2) v(Giv1) = w(giv2) p(giv1) = V(gira)

But now we go through the list of equalities from up to down, starting with v(y) = u(g1), and
ending with p(gx—1) = v(¥'). So in each preceding four cases, we are interested in knowing if
the value of the entry point equals the value of the leaving point.
This is clear for the first’s two cases. For the last’s two ones, fortunately g;.; is a constant,
therefore:

- in the third case, p(giy1) = v(giv1) = git1,

- in the fourth case, v(g;11) = p(giv1) = giv1-
Then there is no breaking point, and we can conclude that v(y) = v(y’), which finishes this
third subcase and the first global case.

Second case. We assume y € S\Dom, and y’ € Dom.
Then, as already mentioned, y € U™ p;(Var(S)).
Subcase 1. We assume y € p;(Var(S))\W;.

As already seen in precedent subcase 1, we have 6(y) = y, but here 6(y’) = ¥ € Dom, and
with 6(y) = 6(y’) we see this is an empty case.

Subcase 2. We assume y € W; and set ¢y = a.

We have 0(y) = 0(y') = a, and y # a. Recall that §(y) = a implies a € Sym (V) U Sym (Vv),
since lemma 2.6.1. So again we are in situation of lemma 7.1, (with remark 7.2.3), and there
is a path between y and a.

The only difference with previous subcase 3 is that the ending point of the path, (that is a),
might be on the right, that is in Sym(v). Assume this. Then, with previous notations, the
last equality (which is possibly the only one) is: v(gx_1) = p(a).

Then, returning with first equality, we have v(y) = u(a) = a =y’ = v(y’'), which proves this
subcase.

Third case. We assume y,y’ € Dom.

Here it’s obvious, y = 0(y) = 0(y") =y —= y =y = v(y) = v(v).
Then the proof of (7.3.1) is complete. Now come back to our proposition.

Definition of substitution a.
We have: Var(Q~'(D)) = Var(U, 6(p;(S))) = Ui, Var(0(p;(S))), (with 1.1.2), and
(with 1.1.4), Var(6(p;(S))) € 6(Var(p;(S))) = 6(p:i(Var(8S))), for i € {1,...,m}. Then:

Vze Var(Q—l(D)), Jie{l,...,m}, x € Var(S) and y € p; (Var (S)) with {Z i gl(g(f))

Using this, we set: a(z) :{ Z(gl)s;ﬁéfé(x)) = vi(pi(2)) if z € Var (Q~1(D)),

To show this define a substitution « on Var(Q_l(D)), we have to verify before that produces
a well-defined function, i. e. : V 2,2/ € Sym, z =2 = a(z) = a(?).

26

As a is set to be identity outside Var(Q~'(D)), the case z = 2z’ € Sym\Var(Q (D)) is
obvious. Now (using 1.1) we have:

Var(Q (D)) € Uz, 0(pi(Vax(S))) € UE, 0(pi(Sym(S))) = 0(Uz, pi(Sym(S)) = 6(S).
then if z = 2/ € Var(Q'(D)),3 y,y € S, such that z = 0(y), 2’ =6(y).

Therefore the result follows from (7.3.1).

Proof of points 2) and 21).

Fix i € {1,...,m}. We first prove that V € Var(S), we have a(0(pi(z))) = vi(pi(z)).
Let z € Var(S). We have 0(p;(x)) € 6(p;(Var(S))) 2 Var(6(p;(S))).

Assume first that z = 6(p;(z)) € Var(6(p;(S))), which is a subset of Var(Q~'(D)).
Then the definition of « is: a(z) = v;(pi(z)).

Assume now that z = 6(p;(z)) € 0(p;(Var(S)))\Var(0(p:(S))).

That clearly means z = 6(y) is a constant, say a € Dom. Notice that y = p;(z) is not a
constant since p; is a renaming.

So we have 0(y) = 6(a) (= a), and y = p;(z) € p;(Var(S)) C p;(Sym(S)) C 8.

Then we apply result (7.3.1) to obtain v(y) = v(a) = a.

Finally o (6(pi(2))) = a(a) = a = v(y) = vi(p;(x)), which proves our statement.

Now we deduce from this, using lemma 1.3, that a(6(p;(S))) = vi(pi(S)). Hence:

1) The definition of v; give us v;(p;(S)) € I. Then we deduce that for all i € {1,...,m},
we have: a(6(p;i(S))) C I, and then a(Q7H(D)) = a(U, 0(p;(S))) = U, a(0(pi(S))) € 1,
therefore 4).

1) We want to prove (D) C Q(a(QH(D))).
Recall that we have by definition of queries:

Q(a(Q7'(D))) = {v(T'(v)) | v substitution on Var (S) and v(S) C a(Q~*(D))}.
Now consider u(T'(v;)) € u(D) (for some ¢ € {1,...,m}).
Using definition of v; and (1.0), we have u(T(v;)) = v;(T(pi(v))) = (v; 0 p;)(T(v)), and then
it remains to verify that v; 0 p; is a substitution on Var(S) such that (v;0p;)(S) C a(Q!(D)).
But we have just already seen (v; 0 p;)(S) = a(6(p;(S))) and a(Q (D)) = U, a(8(p:i(S))).
[The fact that v; 0 p; is a substitution on Var(S) is obvious, since Var(p;(T)) C Var (p;(S)).]

For conclusion of this proposition, it remains to see what happens if I is ground.
The fact that Q(I) is ground follows from lemma 3.2.

Now consider a. We have seen:

VzeVar(QY(D)), Jie {1,...,m} and y = p;(z) € p;(Var(S)) such that z = 6(y), and by
definition a(z) = v(y) = vi(pi(x)).

But with 1.1.4: vi(pi()) € vi(pi(Var(8))) € vi(pi(Sym(S))) = Sym(vi(pi(S))), and by
definition of v;, we have v;(p;(S)) C I, so with 1.1.2: Sym (vi(p;(S))) € Sym(I) = Dom(T),
and therefore o has ground values on Var(Q~'(D)).

Then clearly we can choose constants values for « on variables outside Var (Q_I(D)), which
make it a valuation. Therefore, a can actually be chosen as a valuation.

27

Note. The statement (7.3.1) is no longer true if we take y,3’ € Sym, or even if we take
v,y € Sym (V).

Example for Sym. Take Q : S(z,z) — T'(a,z), D ={T(y,a)}.

Here v= (y,a), w= (a,y’), we have y € Sym (v), ¢ € Sym (w), and this is the case where
Dom (v) N Dom (W) = {a} # 0.

We have 0(y) = 0(a) = a, th(y') = 0(a) = a, so 6(y) = 0(y'), and the path between y and 3’
is clear through a.

Then also v(a) = u(y), v(y') = p(a), and because y ¢ U™, Var(p;(T)) = Var({T(a,2))},
v(y) =y, which is not v(y’) (= a).

Example for Sym (v). Take @ : S(z,b) — T(a,z,2), D ={T(y,y',a)}.

Here v= (y, 4/, a), W= (a, z, z), then y,y’ € Sym (V), with Dom (V) N Dom (W) = {a} # 0.
Here again 6(y) = 6(y’) via the path through a and z, but y,y' ¢ U",Var(p;(T)) =
Var({T'(a, z,2))}, then v(y) =y # y' = v(y).

References

—

S. Abiteboul, R. Hull, and V. Vianu. Foundations of databases. Addison-Wesley, 1995.

2. J. Wijsen. Database Repairing Using Updates. ACM Transactions on Database Sys-
tems, 2005.

3. R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data Exchange: Semantics and
Query Answering. Springer-Verlag, 2003.

4. M. Arenas, P. Barcelé, R. Fagin, L. Libkin. Locally Consistent Transformations and

Query Answering in Data Exchange. PODS 2004, ACM.

28

